设为主页
加入收藏

   您当前的位置:首页 > 关于我们 > 技术文件
 
白光大功率LED长寿低耗电技术
的亮度如果要比传统大数倍,消费电 力特性希望超越荧光灯的话,就必需 先克服下列的四大课题:a.抑制温升;b.确保使用寿命;c.改善发光效率;d.发光特性均等化。

  有关温 升问题具体方法是降低封装的热阻抗;维持的 使用寿命具体方法,是改善芯片外形、采用小型芯片;改善的 发光效率具体方法是改善芯片结构、采用小型芯片;至于发 光特性均匀化具体方法是的改善封装方法,一般认为2005~2006年白光 可望开始采用上述对策。

  有关的使用寿命,例如改 用硅质密封材料与陶瓷封装材料,能使的使用寿命提高10%,尤其是 白光的发光频谱含有波长低于450nm短波长光线,传统环 氧树脂密封材料极易被短波长光线破坏,高功率 白光的大光量更加速密封材料的劣化,根据业 者测试结果显示连续点灯不到一万小时,高功率 白光的亮度已经降低一半以上,根本无 法满足光源长寿命的基本要求。

  有关的发光效率,改善芯 片结构与封装结构,都可以 达到与低功率白光相同水准,主要原 因是电流密度提高2倍以上时,不但不 容易从大型芯片取出光线,结果反 而会造成发光效率不如低功率白光的窘境,如果改 善芯片的电极构造,理论上 就可以解决上述取光问题。

  有关发光特性均匀性,一般认 为只要改善白光的荧光体材料浓度均匀性,与荧光 体的制作技术应该可以克服上述困扰。

  如上所 述提高施加电力的同时,必需设法减少热阻抗、改善散热问题,具体内容分别是:

  ①降低芯 片到封装的热阻抗

  ②抑制封 装至印刷电路的热阻抗

  ③提高芯 片的散热顺畅性

  为了要降低热阻抗,许多国外厂商将芯片设 在铜与陶瓷材料制成的散热鳍片(heatsink)表面,接着再 用焊接方式将印刷电路板上散热用导线,连接到 利用冷却风扇强制空冷的散热鳍片上,根据德国OSRAMOptoSemiconductorsGmb实验结果证实,上述结 构的芯片到焊接点的热阻抗可以降低9K/W,大约是传统的1/6左右,封装后的施加2W的电力时,芯片的 接合温度比焊接点高18K,即使印 刷电路板温度上升到500C,接合温度顶多只有700C左右;相较之 下以往热阻抗一旦降低的话,芯片的 接合温度就会受到印刷电路板温度的影响,如此一 来必需设法降低芯片的温度,换句话 说降低芯片到焊接点的热阻抗,可以有 效减轻芯片降温作业的负担。反过来 说即使白光具备抑制热阻抗的结构,如果热 量无法从封装传导到印刷电路板的话,温度上 升的结果发光效率会急遽下跌,因此松 下电工开发印刷电路板与封装一体化技术,该公司将1mm正方的蓝光以flipchip方式封 装在陶瓷基板上,接着再 将陶瓷基板粘贴在铜质印刷电路板表面,根据松 下表示包含印刷电路板在内模块整体的热阻抗大约是15K/W左右。

  由于散 热鳍片与印刷电路板之间的密着性直接左右热传导效果,因此印 刷电路板的设计变得非常复杂,有鉴于此美国Lumi与日本CITIZEN等照明设备、封装厂商,相继开 发高功率用简易散热技术,CITIZEN公司2004年开始 样品出货的白光封装,不需要 特殊接合技术也能够将厚约2~3mm散热鳍 片的热量直接排放到外部,根据该 公司表示虽然芯片的接合点到散热鳍片的30K/W热阻抗比OSRAM的9K/W大,而且在 一般环境下室温会使热阻抗增加1W左右,不过即 使是传统印刷电路板无冷却风扇强制空冷状态下,该白光模块也 可以连续点灯使用。

  Lumileds公司2005年开始 样品出货的高功率芯片,接合容许温度更高达+1850C,比其它 公司同级产品高600C,利用传统RF4印刷电路板封装时,周围环境温度400C范围内 可以输入相当于1.5W电力的电流(大约是400mA)。

  如以上介绍Lumileds与CITIZEN公司采 取提高接合点容许温度,德国OSRAM公司则 是将芯片设在散热鳍片表面,达成9K/W超低热阻抗记录,该记录比OSRAM过去开 发同级品的热阻抗减少40%,值得一 提是该模块封装时,采用与 传统方法相同的flipchip方式,不过模 块与热鳍片接合时,则选择 最接近芯片发光层作为接合面,借此使 发光层的热量能够以最短距离传导排放。

  2003年东芝Lighting公司曾经在400mm正方的铝合金表面,铺设发光效率为60lm/W低热阻抗白光,无冷却 风扇等特殊散热组件前提下,试作光束为300lm的模块,由于东芝Lighting公司拥 有丰富的试作经验,因此该 公司表示由于仿真分析技术的进步,2006年之后超过60lm/W的白光,都可以轻松利用、框体提高热传导性,或是利 用冷却风扇强制空冷方式设计照明设备的散热,不需要 特殊散热技术的模块结构也能够使用白光。

  有关的长寿化,目前厂 商采取的对策是变更密封材料,同时将 荧光材料分散在密封材料内,尤其是 硅质密封材料比传统蓝光、近紫外 光芯片上方环氧树脂密封材料,可以更 有效抑制材质劣化与光线穿透率降低的速度。

  由于环 氧树脂吸收波长为400~450nm的光线的百分比高达45%,硅质密封材料则低于1%,辉度减 半的时间环氧树脂不到一万小时,硅质密 封材料可以延长到四万小时左右,几乎与 照明设备的设计寿命相同,这意味 着照明设备使用期间不需更换白光。不过硅 质树脂属于高弹性柔软材料,加工上 必需使用不会刮伤硅质树脂表面的制作技术,此外制 程上硅质树脂极易附着粉屑,因此未 来必需开发可以改善表面特性的技术。

  虽然硅 质密封材料可以确保四万小时的使用寿命,然而照 明设备业者却出现不同的看法,主要争 论是传统白炽灯与荧光灯的使用寿命,被定义成“亮度降至30%以下”,亮度减 半时间为四万小时的,若换算成亮度降至30%以下的话,大约只 剩二万小时左右。目前有 两种延长组件使用寿命的对策,分别是:

  1、抑制白光整体的温升;

  2、停止使 用树脂封装方式。

  一般认 为如果彻底执行以上两项延寿对策,可以达成亮度30%四万小时的要求。抑制白 光温升可以采用冷却封装印刷电路板的方法,主要原 因是封装树脂高温状态下,加上强 光照射会快速劣化,依照阿 雷纽斯法则温度降低100C寿命会延长2倍。

  停止使 用树脂封装可以彻底消灭劣化因素,因为产 生的光线在封装树脂内反射,如果使 用可以改变芯片侧面光线行进方向的树脂材质反射板,由于反 射板会吸收光线,所以光 线的取出量会急遽锐减,这也是 厂商一致采用陶瓷系与金属系封装材料主要原因。

  有两种 方法可以改善白光芯片的发光效率,一个是 使用面积比小型芯片(1mm2左右)大10倍的大型芯片;另外一 种方式是利用多个小型高发光效率芯片,组合成一个单体模块。虽然大 型芯片可以获得大光束,不过加 大芯片面积会有弊害,例如芯 片内发光层的电界不均等、发光部位受到局限、芯片内 部产生的光线放射到外部过程会严重衰减等等。针对以 上问题厂商透过电极结构的改良、采用flipchip封装方式,同时整 合芯片表面加工技巧,目前已经达成50lm/W的发光效率。
 
友情链接      
版权所有:吉林省 远景照明工程集团有限公司
      E-mail:[email protected]     销售热线:0431-87689990     售后电话:0431-87689697
吉ICP备15002487号-1
友情链接:    天虎彩票   c32彩票官网   彩票55客户端   快三分分彩   天和彩票app